Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
OI $W — \mathrm{H} 11^{\prime} \cdots \mathrm{O} 1^{\prime}$	$0.76(3)$	$2.14(3)$	$2.895(4)$	$172(5)$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 12^{\prime} \cdots \mathrm{O} 3$	$0.74(3)$	$2.37(4)$	$3.061(6)$	$157(5)$

Symmetry code: (i) $1-x, 1-y,-z$.
Water H atoms were refined with $\mathrm{O}-\mathrm{H}$ distance restraints (command SADI in SHELXL93; Sheldrick, 1993) and methyls were refined as rigid groups, with other H atoms riding.

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93. Molecular graphics: $X P$ (Siemens, 1994b). Software used to prepare material for publication: SHELXL93.

We thank the Fonds der Chemischen Industrie for financial support and Mr A. Weinkauf for technical assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1410). Services for accessing these data are described at the back of the journal.

References

Armand, M., Baret, P., Chautemps, P. \& Pierre, J.-L. (1981). J. Am. Chem. Soc. 103, 2986-2988.
Boekelheide, V., Eaton, B., Hanson, A. W. \& Kang, H. C. (1985). J. Am. Chem. Soc. 107, 1979-1985.
Bubenitschek, P., Heirtzler, F. R., Hopf, H. \& Jones, P. G. (1995). Chem. Ber. 128, 1079-1082.
Cheung, L. D., Greene, F. D., Majeste, R., Trefonas, L. M. \& Viavattene, R. L. (1974). J. Am. Chem. Soc. 96, 4342-4343.
Clardy, J. C., Haley, G. J.. Matz, J. R., McMurry, J. E. \& Mitchell, J. (1986). J. Am. Chem. Soc. 108, 515-516.

Cohen-Addad, C., Baret, P., Chautemps, P. \& Pierre, J.-L. (1983). Acta Cryst. C39. 1346-1349.
Fait. J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Gloe, K., Gross, J., Harder, G., Stephan, H. \& Vögtle, F. (1995). Angew. Chem. Int. Ed. Engl. 34, 481-484.
Herges, R., Jones, P. G. \& Kammermeier, S. (1996). Angen. Chem. Int. Ed. Engl. 35, 2669-2671.
Herges, R. \& Kammermeier, S. (1996). Angew. Chem. Int. Ed. Engl. 35, 417-419.
Iijima, S. (1991). Nature, 354, 56-58.
Jones, P. G., Bubenitschek, P., Heirtzler, F. R. \& Hopf, H. (1996). Acta Cryst. C52, 1380-1384.
Jones, P. G., Heirtzler, F. R. \& Hopf, H. (1996). Acta Cryst. C52, 1384-1388.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994a). XEMP. Empirical Absorption Correction Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994b). XP. Interactive Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1998). C54, 1081-1083

Manganese(II) Triphenylacetate Hydrate, a Manganese(II) Complex with a Chain Structure

Tammy S. Yaukey, ${ }^{a}$ Omar W. Steward ${ }^{* a}$ and Shin-Chi Chang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA, and ${ }^{b}$ Department of Physics, Duquesne University, Pittsburgh, PA 15282, USA.
E-mail: steward@duq3.cc.duq.edu

(Received 13 August 1997; accepted 23 Februar: 1998)

Abstract

The crystal structure of catena-poly[[tetraaqua- $2 \kappa^{4} O-\mu$ -triphenylacetato-1:2 $\kappa^{2} O: O^{\prime}$-bis(triphenylacetato) $-1 \kappa^{4} O$,-O^{\prime}-dimanganese(II)]- μ-triphenylacetato- $2 \kappa O: 1^{\prime} \kappa O^{\prime}$], $\left[\mathrm{Mn}_{2}\left(\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{O}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}$, was determined at 294 K by single-crystal X-ray diffraction. This compound has a chain structure with repeating dimeric units containing two crystallographically independent $\mathrm{Mn}^{\text {II }}$ atoms bridged by sym-sym-(μ-triphenylacetato- O, O^{\prime}) groups via cis positions.

Comment

Bridged metal carboxylates are of interest since the reactive site in many enzyme systems contain these structural features (Holm et al., 1996).

Manganese(II) triphenylacetate hydrate, (I), has a chain structure. The repeating dimeric unit contains two crystallographically independent $\mathrm{Mn}^{\mathrm{II}}$ atoms bridged by sym-sym-(μ-triphenylacetato- O, O^{\prime}) groups via cis positions; the Mnl atom is bonded to two chelating

(I)
triphenylacetato groups, while Mn 2 is bonded to four aqua ligands. The H atoms of the aqua ligands were located on structural refinement (Fig. 1). The $\mathrm{Mn} \cdots \mathrm{Mn}$ distances are $\mathrm{Mn} 1 \cdots \mathrm{Mn} 24.5275$ (7) and $\mathrm{Mn} 1 \cdots \mathrm{Mn} 2^{\prime}$ 4.7210 (7) \AA. There are no inter-chain $\mathrm{O} \cdots \mathrm{O}$ distances less than 3.313 (5) \AA. The only important intra-chain distance where a hydrogen bond almost certainly occurs is between the O 4 atom of a chelating acetato ligand and the O 9 atom of a ligated water molecule $[2.693(3) \AA$].

Fig. 1. Perspective drawing showing the chain structure of manganese(II) triphenylacetate hydrate, with displacement ellipsoids shown at the 20% probability level. The H atoms of the phenyl groups have been omitted for clarity.

The carboxylate stretching frequencies (IR crystalline solid) of the triphenylacetato ligands, both bridging and chelating, are of interest. The symmetrical stretch ($\bar{\nu}_{\text {sym }}$ $1379 \mathrm{~cm}^{-1}$) is not unusual and shows only very slight shoulders. However, the asymmetric stretch occurs over a considerable range ($\bar{\nu}_{\text {asym }} 1511-1642 \mathrm{~cm}^{-1}$) and is multi-structured with a peak at $1563 \mathrm{~cm}^{-1}$ and a broad shoulder at $c a 1590 \mathrm{~cm}^{-1}$. It would be difficult to assign these absorptions to bridging and chelating carboxyl groups without applying isotopic substitution since the $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angles of these groups vary over a considerable range (116.1-123.7 ${ }^{\circ}$) and cannot be grouped by type, cf. Table 1 (Mehrotra \& Bohra, 1983).

Experimental

The title complex, $\left[\mathrm{Mn}_{2}\left(\mathrm{O}_{2} \mathrm{CCPh}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}$, was prepared by a method similar to that reported previously for copper(II)carboxylate complexes (Steward et al., 1986). Triphenylacetic acid ($1.54 \mathrm{~g}, 6.94 \mathrm{mmol}$) was dissolved in 0.25 M NaOH $(100 \mathrm{ml})$ with stirring. The solution was filtered and three drops of phenolphthalein indicator were added. Nitric acid (ca $1 M$) was added from a buret until the end point was reached. Manganese(II) nitrate (50% solution, $1.3 \mathrm{ml}, 6.9 \mathrm{mmol}$ of $\mathrm{Mn}^{\mathrm{II}}$) was added yielding a white precipitate. The precipitate was separated by filtration and allowed to dry overnight yielding 1.86 g of a white solid (92% yield). The complex (0.5 g) was dissolved in absolute ethanol with heating on a
steam bath. The resulting solution was filtered and allowed to evaporate slowly yielding colorless crystals. Calculated for $\mathrm{C}_{80} \mathrm{H}_{68} \mathrm{Mn}_{2} \mathrm{O}_{12}$: C 72.17, H 5.15\%; found: C 71.81, H 5.02%.

Crystal data

$\left[\mathrm{Mn}_{2}\left(\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{O}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
Mo $K \alpha$ radiation
$M_{r}=1331.29$
Triclinic
$P \overline{1}$
$a=14.766(2) \AA$
$b=24.223$ (5) \AA
$c=9.239(1) \AA$
$\alpha=94.74(1)^{\circ}$
$\beta=96.72(1)^{\circ}$
$\gamma=87.19(1)^{\circ}$
$V=3268.2(10) \AA^{3}$
$Z=2$
$D_{\mathrm{x}}=1.353 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-7R diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (TEXSAN: Molecular Structure Corporation, 1992) $T_{\text {min }}=0.835, T_{\text {max }}=0.999$ 15569 measured reflections 14988 independent reflections
$\lambda=0.7107 \AA$
Cell parameters from 25
reflections
$\theta=30.1-38.9^{\circ}$
$\mu=0.452 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Tetragonal
$0.40 \times 0.10 \times 0.10 \mathrm{~mm}$ Colorless

8682 reflections with

$$
\begin{aligned}
& I>3 \sigma(I) \\
& R_{\text {int }}=0.068 \\
& \theta_{\max }=27.50^{\circ} \\
& h=0 \rightarrow 19 \\
& k=-31 \rightarrow 31 \\
& l=-12 \rightarrow 11
\end{aligned}
$$

3 standard reflections every 150 reflections intensity decay: 3.77%

Refinement

Refinement on F
$R=0.048$
$w R=0.052$
$S=1.94$
8682 reflections
847 parameters
H atoms not refined
Weighting scheme based on measured s.u.'s; $w=4 F^{2} / \sigma^{2}\left(F^{2}\right)$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.69 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.71 \mathrm{e} \AA^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Molecular Structure Corporation (1992). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Steward, O. W., McAfee, R. C., Chang, S.-C., Piskor, S. R., Schreiber, W. J., Jury, C. F., Taylor, C. E., Pletcher, J. F. \& Chen, S.-C. (1986). Inorg. Chem. 25, 771-777.

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{MnI}-\mathrm{Ol}$	2.102 (2)	O3-C3	1.266 (4)
$\mathrm{Mnl}-\mathrm{O} 3$	2.228 (2)	O4--C3	1.245 (4)
Mnl-O5	2.226 (2)	O5-C5	1.267 (4)
Mnl - Or^{\prime}	2.065 (2)	O6-C5	1.24! (4)
$\mathrm{Mn2}-\mathrm{O} 2$	2.100 (3)	O7-C7	1.246 (4)
$\mathrm{Mn} 2-\mathrm{O} 7$	2.127 (2)	O8--C7	1.233 (4)
$\mathrm{Mn2}-\mathrm{Ol} 0$	2.210 (3)	$\mathrm{Cl}-\mathrm{C} 2$	1.579 (4)
$\mathrm{Mn2-Oll}$	2.174 (3)	C3-C. 4	1.564 (4)
$\mathrm{Mn} 2-\mathrm{OI} 2$	2.189 (3)	C5-C6	1.554 (4)
$\mathrm{Ol}-\mathrm{Cl}$	1.261 (4)	C7-C8	1.589 (4)
$\mathrm{O} 2-\mathrm{Cl}$	1.228 (4)		
$\mathrm{O} 1-\mathrm{Mnl-O} 3$	95.84 (9)	$\mathrm{O} 10-\mathrm{Mn} 2-\mathrm{O} 11$	88.4 (1)
$\mathrm{Ol}-\mathrm{MnI}-\mathrm{O} 5$	120.77 (9)	$\mathrm{O} 10-\mathrm{Mn} 2-\mathrm{O} 12$	170.2 (1)
$\mathrm{Ol}-\mathrm{MnI}-\mathrm{O}^{\text {1 }}$	98.3 (1)	$\mathrm{O} 11-\mathrm{Mn} 2-\mathrm{Ol} 2$	84.6 (1)
O3--MnI-O5	132.51 (9)	$\mathrm{MnI}-\mathrm{Ol}-\mathrm{Cl}$	130.5 (2)
$\mathrm{O} 3-\mathrm{MnI}-\mathrm{O}^{1}$	97.73 (9)	$\mathrm{Mn} 2-\mathrm{O} 2-\mathrm{Cl}$	167.5 (3)
$\mathrm{O} 5-\mathrm{MnI}-\mathrm{O}^{1}$	104.9 (1)	$\mathrm{Mn} 1-\mathrm{O} 3-\mathrm{C} 3$	92.9 (2)
$\mathrm{O} 2-\mathrm{Mn} 2-\mathrm{O} 7$	97.5 (1)	$\mathrm{Mn} 1-\mathrm{O}-\mathrm{C} 5$	95.1 (2)
$\mathrm{O} 2-\mathrm{Mn} 2-\mathrm{O} 10$	88.22 (10)	$\mathrm{Mn} 2-\mathrm{O} 7-\mathrm{C} 7$	136.0 (2)
$\mathrm{O} 2-\mathrm{Mn} 2-\mathrm{Ol1}$	165.8 (1)	$\mathrm{Mn1}{ }^{\text {1/-O8-C7 }}$	168.5 (3)
$\mathrm{O} 2-\mathrm{Mn} 2-\mathrm{O} 12$	97.0 (1)	$\mathrm{O} 1-\mathrm{Cl}-\mathrm{O} 2$	123.7 (3)
$\mathrm{O} 7-\mathrm{Mn} 2-\mathrm{O} 10$	104.77 (10)	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{O} 4$	121.0 (3)
$\mathrm{O} 7-\mathrm{Mn} 2-\mathrm{Oll}$	96.7 (1)	O5-C5-O6	118.6 (3)
$\mathrm{O} 7-\mathrm{Mn} 2-\mathrm{O} 12$	82.90 (10)	O7-C7-08	124.4 (3)

Symmetry codes: (i) $x, y, 1+z ;$ (ii) $x, y, z-1$.
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1992). Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

Financial support from the Kresge Foundation is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1373). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, M., Giacovazzo, C., Guagliardi, A. \& Polidori, G. (1994). J. Appl. Cryst. 27, 435.

Holm, R. H., Kennepohl, P. \& Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314, and references therein.
Mehrotra, R. C. \& Bohra, R. (1983). Metal Carboxylates, pp. 48-60, and references therein. New York: Academic Press.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Acta Cryst. (1998). C54, 1083-1085

Absolute Configuration of (+) 589 -(4,4'-Dimethoxy-2,2'-bipyridine $\mathbf{1 , 1}{ }^{\prime}$-dioxide$\left.O, O^{\prime}\right)$ bis(ethylenediamine- N, N^{\prime})cobalt(III) Triperchlorate

Hideaki Kanno, ${ }^{\text {a }}$ Shunji Utsuno, ${ }^{a}$ Junnosuke Fujita ${ }^{b}$ and Kinya Iuima ${ }^{a}$
${ }^{a}$ Department of Chemistry, Faculty of Science, Shizuoka University, 836 Oya, Shizuoka 422, Japan, and ${ }^{b}$ Division of Natural Sciences, International Christian University, Osawa, Mitaka 181, Japan. E-mail: sckiiji@sci.shizuoka.ac.jp

(Received 21 November 1997; accepted 17 February 1998)

Abstract

The complex ion of the title molecule, $(+)_{589}-$ $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{3}$, has twofold symmetry and the absolute configuration is Λ. The sevenmembered chelate ring of the $4,4^{\prime}$-dimethoxy- $2,2^{\prime}$-bipyridine $1,1^{\prime}$-dioxide ligand adopts a δ chiral skew conformation, which forms a lel structure in the complex ion. The dihedral angle between the two pyridine rings is $61.2(2)^{\circ}$, and the $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ bite angle is $91.3(2)^{\circ}$. The ethylenediamine chelates take a δ-gauche conformation in the complex ion.

Comment

2,2'-Bipyridine $1,1^{\prime}$-dioxide (bpdo) forms a skewed seven-membered chelate ring with a metal ion (AlKaraghouli et al., 1978; Alcock \& Roberts, 1987; Koman et al., 1991; Baran et al., 1991). Since the skew conformation produces a pair of enantiomers, δ and λ, a tris(bpdo) complex has four possible racemic pairs of diastereomers. Recently, it was reported that a tris $\left[4,4^{\prime}-\right.$ (MeO$)_{2}$ bpdo]chromium(III) complex gave two of four possible diastereomers, where $4,4^{\prime}-(\mathrm{MeO})_{2} \mathrm{bpdo}$ is the 4,4'-dimethoxy derivative of bpdo (Kanno et al., 1996). However, the molecular structures of optically active complexes with bpdo have not been reported. A new bis(en)cobalt(III) complex with $4,4^{\prime}$-(MeO$)_{2}$ bpdo was thus prepared, where en is ethylenediamine. The complex, (I), was found to form only one diastereomer in solution (${ }^{13} \mathrm{C}$ NMR spectrum), though the complex has two

